skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dillencourt, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this paper, we derive parameterized Chernoff bounds and show their applications for simplifying the analysis of some well-known probabilistic algorithms and data structures. The parameterized Chernoff bounds we provide give probability bounds that are powers of two, with a clean formulation of the relation between the constant in the exponent and the relative distance from the mean. In addition, we provide new simplified analyses with these bounds for hash tables, randomized routing, and a simplified, non-recursive adaptation of the Floyd-Rivest selection algorithm. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Georgiadis, Loukas (Ed.)
    We provide and study several algorithms for sorting an array of n comparable distinct elements subject to probabilistic comparison errors. In this model, the comparison of two elements returns the wrong answer according to a fixed probability, p_e < 1/2, and otherwise returns the correct answer. The dislocation of an element is the distance between its position in a given (current or output) array and its position in a sorted array. There are various algorithms that can be utilized for sorting or near-sorting elements subject to probabilistic comparison errors, but these algorithms are not data oblivious because they all make heavy use of noisy binary searching. In this paper, we provide new methods for sorting with comparison errors that are data oblivious while avoiding the use of noisy binary search methods. In addition, we experimentally compare our algorithms and other sorting algorithms. 
    more » « less